Orientation Covariant Aggregation of Local Descriptors with Embeddings

نویسندگان

  • Giorgos Tolias
  • Teddy Furon
  • Hervé Jégou
چکیده

Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotation and translation covariant match kernels for image retrieval

Most image encodings achieve orientation invariance by aligning the patches to their dominant orientations and translation invariance by completely ignoring patch position or by max-pooling. Albeit successful, such choices introduce too much invariance because they do not guarantee that the patches are rotated or translated consistently. In this paper, we propose a geometric-aware aggregation s...

متن کامل

The Effects of Carbon Nanotube Orientation and Aggregation on Static Behavior of Functionally Graded Nanocomposite Cylinders

In this paper, the effects of carbon nanotube (CNT) orientation and aggregation on the static behavior of functionally graded nanocomposite cylinders reinforced by CNTs are investigated based on a mesh-free method. The used nanocomposites are made of the straight CNTs that are embedded in an isotropic polymer as matrix. The straight CNTs are oriented, randomly or aligned or local aggregated int...

متن کامل

BoF meets HOG: Feature Extraction based on Histograms of Oriented p.d.f Gradients for Image Classification

Image classification methods have been significantly developed in the last decade. Most methods stem from bagof-features (BoF) approach and it is recently extended to a vector aggregation model, such as using Fisher kernels. In this paper, we propose a novel feature extraction method for image classification. Following the BoF approach, a plenty of local descriptors are first extracted in an im...

متن کامل

SUPER- AND SUB-ADDITIVE ENVELOPES OF AGGREGATION FUNCTIONS: INTERPLAY BETWEEN LOCAL AND GLOBAL PROPERTIES, AND APPROXIMATION

Super- and sub-additive transformations of aggregation functions have been recently introduced by Greco, Mesiar, Rindone and v{S}ipeky [The superadditive and the subadditive transformations of integrals and aggregation functions, {it Fuzzy Sets and Systems} {bf 291} (2016), 40--53]. In this article we give a survey of the recent development regarding the existence of aggregation functions with ...

متن کامل

Stochastic Image Reconstruction from Local Histograms of Gradient Orientation

Many image processing algorithms rely on local descriptors extracted around selected points of interest. Motivated by privacy issues, several authors have recently studied the possibility of image reconstruction from these descriptors, and proposed reconstruction methods performing local inference using a database of images. In this paper we tackle the problem of image reconstruction from local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014